tractor_beam.utils package
tractor_beam.utils.config module
- class tractor_beam.utils.config.Config(conf: str | dict | None = None)[source]
Bases:
object
- create(config: dict = None)[source]
This Python function creates a project directory based on a provided configuration dictionary.
- Parameters:
config – The config parameter in the create method is a dictionary that contains
configuration settings for a project. This method checks if the config parameter is provided, parses the configuration, creates a project directory based on the parsed settings, and writes the configuration to a config.json file in :type config: dict :return: either a success message indicating that the project has been successfully created and the configuration has been saved in a JSON file, or a fatal error message indicating that the project already exists or the provided config schema does not match the requirements.
- save()[source]
This function saves a configuration object to a JSON file. :return: The save method returns either the saved configuration object (self.conf) and the path where it was saved (conf_path), or it returns None if there was an error or if there was no configuration to save.
- unbox(overwrite: bool = False)[source]
The function unbox creates a project directory based on configuration settings, with an option to overwrite existing directory.
- Parameters:
overwrite – The overwrite parameter in the unbox method is a boolean flag that
determines whether to overwrite an existing directory if it already exists. If overwrite is set to True and the directory at proj_path already exists, the method will delete the existing directory and create a, defaults to False :type overwrite: bool (optional) :return: The unbox method returns the result of the self.save() method.
- class tractor_beam.utils.config.ConfigEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)[source]
Bases:
JSONEncoder
- default(obj)[source]
Implement this method in a subclass such that it returns a serializable object for
o
, or calls the base implementation (to raise aTypeError
).For example, to support arbitrary iterators, you could implement default like this:
def default(self, o): try: iterable = iter(o) except TypeError: pass else: return list(iterable) # Let the base class default method raise the TypeError return super().default(o)
- class tractor_beam.utils.config.CustomJob(func: str | None = None, headers: dict | None = None, types: list | None = None)[source]
Bases:
object
- func: str | None = None
- headers: dict | None = None
- types: list | None = None
- class tractor_beam.utils.config.Job(url: str, types: List[str] | None = None, tasks: List[str] | None = None, beacon: str | None = None, delay: float | None = None, custom: tractor_beam.utils.config.CustomJob | None = None)[source]
Bases:
object
- beacon: str | None = None
- delay: float | None = None
- tasks: List[str] | None = None
- types: List[str] | None = None
- url: str
- class tractor_beam.utils.config.Schema(role: str, settings: tractor_beam.utils.config.Settings)[source]
Bases:
object
- role: str